97 research outputs found

    Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry

    Get PDF
    The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we provide evidence for the existence of unknown inositol synthesis pathways in mammals, highlighting the potential of this method to dissect inositol phosphate metabolism and signalling

    Fingerprinting of hydroxyl radical-attacked polysaccharides by N-isopropyl-2-aminoacridone labelling

    Get PDF
    Hydroxyl radicals ((•)OH) cause non-enzymic scission of polysaccharides in diverse biological systems. Such reactions can be detrimental (e.g. causing rheumatic and arthritic diseases in mammals) or beneficial (e.g. promoting the softening of ripening fruit, and biomass saccharification). Here we present a method for documenting (•)OH action, based on fluorescent labelling of the oxo groups that are introduced as glycosulose residues when (•)OH attacks polysaccharides. The method was tested on several polysaccharides, especially pectin, after treatment with Fenton reagents. 2-Aminoacridone plus cyanoborohydride reductively aminated the oxo groups in treated polysaccharides; the product was then reacted with acetone plus cyanoborohydride, forming a stable tertiary amine with the carbohydrate linked to N-isopropyl-2-aminoacridone (pAMAC). Digestion of labelled pectin with ‘Driselase’ yielded several fluorescent products which on electrophoresis and HPLC provided a useful ‘fingerprint’ indicating (•)OH attack. The most diagnostic product was a disaccharide conjugate of the type pAMAC·UA-GalA (UA=unspecified uronic acid), whose UA-GalA bond was Driselase-resistant (product 2A). 2A was clearly distinguishable from GalA-GalA–pAMAC (disaccharide labelled at its reducing end), which was digestible to GalA–pAMAC. The methodology is applicable, with appropriate enzymes in place of Driselase, for detecting natural and artificial (•)OH attack in diverse plant, animal and microbial polysaccharides

    Tailor-made ionic liquids

    No full text
    This article presents a first consequent thermodynamic optimization of ionic liquids (IL) as entrainers in the distillative separation of both an azeotropic aqueous (tetrahydrofuran + water) and a close-boiling aromatic test system (methylcyclohexane + toluene) on the basis of COSMO-RS predictions. The use of this method allows for the preselection from the large pool of available IL. Thus, favorable structural variations were identified and used for tailoring IL entrainers. For the prediction of activity coefficients with COSMO-RS, the use of different conformations of the components, derived from conformational analyses, leads to varying results. The simulations showed that the influence of conformations of the volatile components and the ionic liquids depends largely on the type of the phase equilibrium, which is investigated. The approach to tailor ionic liquids as additives for separation science starts with the prediction of the activity coefficients at infinite dilution. The simulation indicated that a higher degree of branching or longer alkyl substituents on the cation, as well as a low nucleophilicity of the anion decreases both selectivity and capacity in the polar test mixture. However, COSMO-RS calculations for the non-polar mixture showed that the selection of an entrainer for this system is more complicated, because - contrarily to (tetrahydrofuran + water) - structural variations of the IL entrainer cause converse changes in selectivity and capacity: while the selectivity for toluene increases with a lower degree of branching and a shorter alkyl substituent of the cation as well as with a lower nucleophilicity of the anion.. these properties decrease the capacity. In this work. the most favorable IL entrainers were synthesized and the separation factors of the test systems were experimentally validated at finite dilution. (c) 2005 Elsevier Ltd. All rights reserved

    5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson's disease

    No full text
    Excitotoxicity-mediated cell death is involved in Parkinson's disease (PD). 5-HT1A receptor agonists can protect from such mechanisms. The current study demonstrates that the 5-HT1A agonists BAY 639044 and repinotan have neuroprotective effects in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In addition, we also show that both compounds delay the appearance of parkinsonian motor abnormalities in a MPTP monkey model that recapitulates the progressive nature of PD. Thus, BAY 639044 or repinotan treatment was initiated when there was 30% neuronal death in the substantia nigra pars compacta, and nerve terminal loss in the striatum was 40%, i.e., compatible with the clinical situation where early symptomatic patients would receive such a treatment. The delay in appearance of parkinsonian motor abnormalities is a consequence of partial neuroprotection of nigrostriatal dopamine neurons, both at neuronal and terminal levels as shown for BAY 639044. These results suggest that 5-HT1A agonists, such as BAY 639044, may protect from neurodegeneration and delay the worsening of motor symptoms in Parkinson patients. © 2006.Peer Reviewe

    Improved detection of steroids on NH2 layers

    No full text
    • …
    corecore